1 
 divide whole objects into parts and identify and describe, through investigation, equalsized parts of the whole, using fractional names (e.g., halves; fourths or quarters).

2 
 determine, through investigation using concrete materials, the relationship between the number of fractional parts of a whole and the size of the fractional parts (e.g., a paper plate divided into fourths has larger parts than a
paper plate divided into eighths) (Sample problem: Use paper squares to show which is bigger, one half of a square or one fourth of a square.).

4 
 demonstrate and explain the relationship between equivalent fractions, using concrete materials (e.g., fraction circles, fraction strips, pattern blocks) and drawings;

4 
 compare and order fractions (i.e., halves, thirds, fourths, fifths, tenths) by considering the size and the number of fractional parts (e.g., ^{4}⁄_{5}
is greater than ^{3}⁄_{5} because there are more parts in ^{4}⁄_{5};
^{1}⁄_{4} is greater than ^{1}⁄_{5}
because the size of the part is larger in ^{1}⁄_{4});

5 
 demonstrate and explain the concept of equivalent fractions, using concrete materials (e.g., use fraction strips to show that ^{3}⁄_{4}
is equal to ^{9}⁄_{12});

6 
 represent, compare, and order fractional amounts with unlike denominators, including proper and improper fractions and mixed numbers, using a variety of tools and using standard fractional notation;

6 
 determine and explain, through investigation using concrete materials, drawings, and calculators, the relationships among fractions, decimal numbers, and percents

7 
 add and subtract fractions with simple like and unlike denominators, using a variety of tools and algorithms;

8 
 solve problems involving addition, subtraction, multiplication, and division with simple fractions.
